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1. Introduction

The two parameter Weibull distribution has found many applications

in the biological, engineering, and the hydrological sciences. For

instance it has been used by Doll (1971), to describe the observed age

distribution of many human cancers. Its use for describing failures

of electrical and mechanical components is well documented in the

engineering literature, and in a comprehensive study, Benson (1968)

discusses its use for analyzing flood data.

In this paper, we address ourselves to the problem of testing the

null hypothesis H0 : that a given random sample belongs to a Weibul or an

extreme value distribution with unknown parameters. The test statistics will

beEDFstatistics, i.e., those based on the empirical distribution function,

and we present tables of critical values for testing H0 .

A foundation for developing the tables of critical values is the

recent theory by Durbin (1973) on the weak convergence of an "empirical"

stochastic process. This stochastic process is based on the empirical

distribution function and estimates of the unknown parameters. The

statistics that we discuss can be represented as well-behaved functionals

of this empirical process.
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2. Preliminaries

The two-parameter Weibull distribution is givLn by

II

P(T<t) = 1 - exp - , t>O (2.1)

= 0 , otherwise;

the scale parameter 6 and the shape parameter 3 are both assumed to be

positive.

If we make the transformation X = -InT, where T has the distribu-

tion (2.1), then X is said to have the extreme value distribution.

P(X<x) = F(x) = exp -exp- ( ), - < x < ', (2.2)

1

where a = -1n6 and b =  are the location and the scale parameters,

respectively.

The tests that we discuss in this paper are for the extreme value

distribution. To make a test of fit for the Weibull distribution we

shall take the negative of the natural logarithms of the supposed

Weibull data. Thus, we wish to consider the case of testing whether

the distribution of a random sample X1 , X2, ..., Xn, say F, is an

extreme value distribution with unknown location and scale parameters

a and b , respectively. Specifically, we wish to test the null

hypothesis

H0: F(x) = G(x)

for all x and for some (a,b) , where G(.) is the distribution F(.)

given by (2.2).

When a and b are specified, the H0 is said to be "simple,"

and the test reduces to testing the hypothesis that the independent

random variables

-2-
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Z.= ( = exp exp, I < n

have a common uniform (0,I) distribution. The Kolmogorov-Smirnov test

is based on the statistic

Vn sup IGn(t)-tj (2.3)
0<t<l

where

G t) I G < t), 0 < t < 1, and (2.4)
n n i=l

1r

jkhere I(E) denotes the indicator of the event E. Under the null

hypothesis, the "empirical" stochastic process

W n(t) = /n (Gn(t)-t), 0 < t < (2.5)

satisfies

W (t) -di Wo  in o&[O,il (2.6)

where - denotes convergence in distribution, and W

the Gaussian process determined by E(W 0(t))= 0, and

3
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0 0
E(W (s)W (t)) = min (s,t) - st, 0 _ s, t <_ I. " 10,11 denotes the

space of functions on [0,1] which are right continuous and have left-

hand limits.

When 110 is composite, an analogous test statistic and a con-

vergence theorem are obtained; these are discussed below.

3. Asymptotic Results When H is Composite

When a and b are not specified H0 is composite, and we

shall use (a n n ) , the maximum likelihood estimators of (a,b)

Following Stephens (1977) we call this situation Case 3. (Cases 1

and 2 refer to the less important cases in which only a is unknown

or only b is unknown.)

Let

X.-a
y n1 i < n,

n,1 '
n

and define

n

Hn (t) = -. E l(G(Y n,i)<t), 0 t < 1 (3.1)

i=l

and

Y n rt) F _ (H n(t)-t), 0 1 t 1 1 (3.2)

Then from a theorem of Durbin (1973) and the appropriate regularity

conditions, the empirical process n(t); 0 _< t < I is such that

Yn d Y0  in ,

0
where Y is a Gaussian process determined by

0!

E(Y (t))= 0 , 0 t

4-
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and

.0 0
E(Y (s)y (t)) min(s,t) - st - 1.1.08(slogs)(tlogt (3.3)

+ . 257(slogs)(tlogtlog(-iogt))

+ 257(slogslog(-logs)(tlogt))

- .60793(slogslog(-logs)tlogtlog(-logt)), 0 < s, t <-

The above has also been shown by Stephens (1977). TI.e statistics of

interest in connection with H0 are:

(i) the one-sided Kolmogorov-Smirnov statistics

+
D = sup Y (t) , (3.4)

O<t<l

D= -inf Y (t) , (3.5)
O<t<l

(ii) the Kolmogorov-Smirnov statistic

D = max (D+ , D-) , (3.6)

(iii) the Kuiper statistic

V =D +D (3.7)

5-
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(iv) the Cramer-Von Mises statistics

W= Y2 (t)dt , (3.8)

0 n

(v) the Watson statistic

U2 fj01 Y2 (t)dt - [I1 Yn(t)dt] 2  (3.9)

and the Anderson-Darling statistic

A 2 '0 =f dt (3.10)= t (l-t

As a consequence of the continuous mapping theorem, the limit

+ 2 2 2
laws of D , D , D, V, , U , and A under Ho, are given by the laws of

0 0 + - 0 2
the random variables sup Y (t), -inf Y (t), max (D , D-), f(Y (t) dt,

O-t~l -O-t~i

(Y 0(t)dt) 2 Y 0 (t)dt , and lim f 0 2 dt

respect ively.

4. Saming Distributions of the Test Statistics

Stephens (1977) has found from theoretical 'worli the cumulants

2 2 2
of the limiting distributions of W , U , and A , and has used these

to approximate the distributions. The pth quantiles of these limiting

distributions, together with a modification for these variables when

the sample size is finite are given by Stephens (1977, Table I).

-6-
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The sampling distributions o1 1) + , 1), 1) , and V have also been

obtained by Stephens (in sone unpublished work), using Monle Carlo methods,

for samples of size 10, 20, and 50. Using these finite sample results,

Stephens uses an extrapolation of the quantiles for finite n , to obtain

the corresponding asymptotic quantiles. The smoothed Monte Carlo points

are given under Case 3, in Table 4.0. Also given in Table 4.0 are the quan-

+-
tiles of the distributions of 1) , D, D , and V when only the scale parameter

is unknown (Case I), and when only the location parameter is unknown (Case 2).

The points for Case 2 were obtained by Monte Carlo methods similar to those

for Case 3, but for Case 1, we include some exact points given by Durbin (1975).

Durbin's paper is concerned with testing for exponentiality but, with

some rearrangement, his points apply for Case 1. This is because, in Case 1,

b in the extreme value distribution is known; then if we make the transforma-

tion y = exp(-X/b), it is easily shown that the distribution of y is the

exponential distribution F(y) = l-exp(-Ay), y > 0 , where A is exp(a/b).

Thus the problem reduces to testing that y has the exponential distribution

with A unknown (since a is unknown). Durbin has found the exact points

for /nD + , v'nD- and nD for this situation, and has given extensive tables

for n - 100 . Durbin's exact points have been used where possible in

Table 4.0, Case i. Because the transformation y = exp(-X/b) is monotonically

decreasing, the D+  calculated directly from the X-values will equal D

calculated from the y-vaiues, and D-(X-values) will equal D+ (y-values';

therefore the values in Table 1, Case 1, for nD+  are D'itbin's values for

/nD- and vice versa. Values of vnV in Table 4.0, Case 1 are obtained from

Monte Carlo methods; asymptotic values for /nD + , vnD- and i/nD are obtained

by extrapolating Durbin's exact points, bearing in mind :hat v/nD+ and inD-

should have the same asymptotic distributions.

-7-
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-7-
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A second method of obtaining the a'-ymIpt ot ic sampling distribut ions of

the varlabl,' (3.4) through (3. 10) is suggested in Wood (1978), and involves

0
a diroct sinnulat ion of the Gaussian process Y . Spec it ic a I I y , t ie process

Y0 is approx imated by its fin it e d imens i onal1 di stri but i on, corre-

sponding to an evaluation of the process at k equa I ly spaced points in the

init interval. Ten thousand multivariate normal rndoi: vectors with

the covariance matrix given by (3. 3) were generated using the extended

precision version of a program from the IMS library. The mpiri I

dist ribut ions of the supremum, t he inl imum, and t he di ferencc between

the supremum and the i infimum of the resulting mult ivar iate normal vectors

were then tabulated, thus approximating the limit laws of ,'n D,

S, Vn-U, and ,n V. The Limit laws of W , and A- were approximated

by us ing numerical integration techniques. For this. we used subroutine

QSF from the IBt' Scient ific Subroutine Package. In order to obtain

the quatitiles of the true approximating limiting distribution, (i.e.,

for for k = -), extrapolations from finite values of k must be

performed; how this is done is explained in Section 4.1.

Since Stephens (1977) has already obtainec' the quantiles of

2 2 2
the limiting distributions of W , U , and A using theoretical methods,

the main purpose served by simulating the process V 0 is to obtain

the quantiles of the limiting distributions of i )+ , n D-, vn D, and

/ V by this alternative method. The Kolmogorov-Smirnov statistics

D + I), and 1) are known in similar goodness-ot-fit sitoations to have

rolatively low power. However, they are commonly used in practice and

I) +  and D- arc very useful for one-sided tests; thus a comparison of the

two methods of obtaining quantiles, both involving extropolation, would

be valuable. We now proceed to this comparison.

-8-
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4.1t Results of tile? Montt- Carlo, Simulation and Extrapolations

in lab les 4.1 througn 4.4, We give the quant les of tile limiting

distributions of the Lest statistics (3.4) throuigh (1i.10), obtained

from statist ics 1.0,000) rept icat ions, of thle process Y 0, and using

k 29, '39, 89 and 119 equally spaced points.r

In order to obtain the quantLiles of the distribut ions Whecn k

is infinite, we shall Plot the kt1h quantile versus frec f
k fo eIho

the test statistics and extrapol ate to zero. The o~uant iies considered

are for p = 0.75, 0.90, 0.95, 0.975 and 0.99.

For example, in Figure 4.1 we show a plot of the 0.75th quantile

versus I for k = 29, 59, 89 and 119, for tile tv.,t ;statiStiC 1

The dot ted Iiioe is our li[near extrapo tat ion to) oh ta in t he 0. 75thl

quant ile of the true limiting distribution (i.e., wl.en k ).In

Figure 4.2, we show thle plot for thle 0.90th quant ile. Also shown

on Lte vertical axis of Figure 4.2 by anl asterisk, is thle 0.90th

quant ile of t he asymptotic di st ribut ion of 1) + , t a ined by Stephens,

and given in Table 4.0. In lFigures (4.3) through (4.5), we show

analogous plots for p (0.9'5, 0.97'), and 0.99. Similar plots, for

thec other statitc D , ),W, U , and A~ . ar- given in

Figures (4.6) through (4. 23). The asterisks onl the vertical ax is of

Figures (4. 17) Ltrouigh (4.23) represent the appropriate quant ii es of

tht, limit ing dist ributions of W 2 , UI 2,and A 2obtained by Stephens

(1977, Table 1 ). Since thlese have been obtai ned thIeoret icallIy , they

provide us withI a benchmark for assessing the, accuracy of thle simu la-

t ions of thli asymp tot ic process, and ASO give US :;One gouidel ines for

ext rapotat i ois.

-"d 

d~ 
() -lo 
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E'xamination of Figures (4.1) through (4.23) suggests the

fo lowing comment s:

_I

(a) The plots of the pth quantile versus , for

all the variables considered here, are approximately

linear for small values of p , say p = 0.75 , but

tend to curve down for the larger values of p

espeeiail.y for p = 0.99. Figure (4.1) is an

example of the former and Figure 4.12 is an example

of the latter. We should expect the clirve to be

monotonic in .... , and the curving down

suggests that, as k becomes larger, the

0
accuracy of the simulation of Y may

become suspect.

(b) The linearly extrapolated values shown in the

plots are, in most instances, larger :.han the

corresponding values obtained by Stephens (i.e.,

those indicated by the asterisks). However,

parabolic extrapolation, also shown in the plots,

gives asymptotic values mucIh closer to the

2 2
asterisks; since the asterisks for W , U , and

2
A can be regarded as quite accurate, it appears

that parabolic extrapolation is to be preferred

to linear extrapolation.

- 10-
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4.2 SimuLating _tL.Maximum of a Brownian Motion Process

In comment (a) above, we have noted that it appears that the

direct method of simulating the asymptotic process by its discrete

analogue evaluated at k points may lead to inaccuracies when k

becomes large. In order to investigate this possibility further, it

was decided to simulate the following Brownian motion process, for

which the distribution of the maximum is well known. The process

{W(t); 0 <, t < ]} has mean 0 and covariance.

E W(s)W(t)1 = min (s,t) (4.1)

In order to approximate the process, we obtain W(t) at k + I

equally spaced points on the interval (0,1), i.e., we evaluate

tW(j)/k); j = 0, 1, ... k} by generating multivariate normal vectors

as described above. Siegmund(1978) has shown that the distribution

of the maximum of this discretized process can be approximated by

' ' .583,

P' fax W(j/k) > x) = 2{1 - 4) (x + (4.2)
0<j<k(4)

where (x) = Ix et t/2 , Siegmund's result is exact when k

is infinite.

In 'Table 4.5 we show tile quantiles of the distribution of

max. W(./k) , 0 _ j _ k , for k = 20, 30, 50, 60, and 90, obtained

by :;imult ion, using 10,000 repi icaL ions, and these are compared with

the results given by Siegmund':; approximation (4.2). In Figure 4.24

these rf,sults are shown granhically. The results of this simulation

- II -
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indicate that it would be difficult to use the simulated points

alone to obtain the correct intercept on the y-axis; the turning-

down effect is again present when k becomes large. Also, it

appears as though either linear or parabolic extraDolation would

give reasonable results, the variability in the Monte Carlo points

making it difficult to distinguish between these methods.

5. Quantiles of Limiting Distributions of EDF Statistics

In view of comment (b) above, supported by the above results,

it seems reasonable to extrapolate parabolically to obtain asymptotic

percentage points in Figures 4.1 to 4.16 for statiscics D+ , D-, D

and V. The results are given in Table 5.1, for D+, D-, D ,and V;

the values given by Stephens' Monte Carlo method are included for com-

parison. It is clear that there is negligible difference between the

values, in terms of the percentage level, so that the mean of the two

estimates (or of all four for D+ and D- which shoild have the same

quantiles) might be taken as a reasonable compromise till more accur-

ate methods of finding true values are available. Table 5.2 lists

the quantiles of the asymptotic distributions of all the EDF statistics,

using this compromise estimate for D+, D-, D, and V , and Stephens'

2 2 2
theoretically calculated values for W , U , and A

6. Further Remarks

(a) The above extensive study was motivated by the desire to

compare two methods of obtaining asymptotic quantiles of test statistics

which are functionals of a process which is asymptotically Gaussian.

- 12 -
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By a comparison of the two methods, even though each one is based on

Monte Carlo simulations followed by extrapolation, points are obtained

whichi we feel will be accurate for practical purposes.

(b) The second method, of directly approximating the asymptotic

process by simulating a discretized version at k points, is a naturally

appealLng one. However, indications are that it is very difficult to

preserve accuracy as k becomes large. We have to be cautious, since

we do not always know what to expect of the calculated quantity (in our

case, values of functionals of the process) as k becomes larger. How-

ever, we had one good indication, given by Siegmund's approximation for

the quantiles of the maximum of the Brownian motion process, which sug-

gests that these quantiles should vary monotonically in k . This was

not the case for the simulated results; and although we must remember

that these are subject to sampling variations, the evidence overall in

these studies suggests that increasing k will not necessarily give

better asymptotic results, probably because the handling of k

multivariate normal vectors produces inaccuracies.
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Figure 4.1
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Figure 4.2
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iigur w 4.3
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Table 4.0

Upper Tail uantiles for EDF Statistics Vr D+ , /T D

vr- , - V . (For explanation of Cases 1, 2 and 3, and the

Xontc Carlo technique Used seo Section 4)

Statistic nip .90 .95 .975 .99

r~+af D 10 .872 .969 1.061 1.152
Case 1 20 .878 .979 1.068 1.176

50 .882 .987 1.070 1.193
.886 .994 1.104 1.207

v- D
+  1O .988 1.135 1.273 1.419

Case 2 20 1.003 1.152 1.282 1.432
50 1.012 1.168 1.287 1.439

1.019 1.174 1.289 1.444

/1 V 10 .685 .755 .842 .897
Case 3 20 .710 .780 .859 .926

50 .727 .796 .870 .940
.732 .808 .876 .951

h IT 10 .773 .883 .987 1.103
Cast? 1 20 .810 .921 1.013 1.142

50 .840 .950 1.031 1.171
.886 .994 1.104 1.207

1 10 1.012 1,162 1.275 1.409
Case 2 20 1.006 1,150 1.280 1.432

50 1.001 1.142 1.290 1.448
0, 1.019 1.17 1.296 1.456

10 .700 .766 .814 .892

Case 3 10 .715 .785 .843 .926
50 .724 .796 .860 .944
1X .73 .81 .87 .96

-39-
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Table 4.0 (Continued)

Statlisci nip .90 .95 .975 .99

, 0 .934 1.026 1.113 1.206
Ca-, 20 .954 1.049 1.134 1.239

50 .970 1.067 1.148 1.263
.990 1.086 1.200 1.300

n D 10 i.141. 1.270 1.390 1.520
uasc 2 20 1.152 1.281 1.403 1.525

50 1.157 1.286 1.411 1.528
1 .161 1. 290 1.417 1. 530

1a 3 10 .760 .819 .880 .944
Casv 3 20 .779 .843 .907 .973

50 .790 .856 .922 .988
.797 .868 .932 1.001

n V 10 1.428 1.547 1.650 1.772
Case 1 20 1.460 1.575 1.685 1.813

50 1.480 1.593 1.716 1.838
' 1.53 1.65 1.77 1.91

/n V i0 1.386 1.493 1.596 1.715
Case 2 20 1.424 1.538 1.641 1.763

50 1.445 1.564 1.667 1.793
00 1.459 1.584 1.686 1.812

,FTV3  10 1.287 1.381 1.459 1.535
Case 3 20 1.323 1.428 1.509 1.60050 1.344 1.453 1.538 1.639

c 1.360 1.471 1.558 1.664

40"

I
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Table 4.1

Asymptotic Quanti~es* (Estimalt) o' EDF Tes:L
StatLIsics for Lhe Lxtreme Value Distribution

With Both Paramedri Lstimated

pth Quancile

D D 2 2
D - D V W U A

0.010 0.198 0.197 0.264 0.489 0.015 0.014 0.098

0.025 0.224 0.226 0.299 0.537 0.018 0.017 0.116

0.050 .O 0.251 0.326 0.581i 0.021 0.020 0.134

0. 0.220 0.251

o.20 0.144 0.343 0.421. 0.739 0.035 0.032 0.213

0. 00 0.429 0.427 0.505 0.871 0.049 0.047 0.295

0.7j0 0.336 0.532 0.611 1.032 0.072 0.068 0.417

0.900 0.o00 0.649 0.721 1.199 0.100 0.095 0.569

0.950 0.728 0.72 0.791 i.310 0.123 0.117 0.696

0.975 0.790 0.794 0.853 1.401 0.146 0.138 0.820

0.990 0.868 0.877 0.925 1.521 0.175 0.165 0.979

*:Based on di-ect simulation of the asymptotic process,

using k = 30 intervals and 10,000 replicates
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Table 4.2

Asymptotic Quantiles* (Estimates) of EDF Test

Statistics for the Extreme Value Distribution
With Both Parameters Estimated

I oth Quantile

SO D- D V A

(.010 0.230 0.232 10.300 0.554 u.016 0.016 0.113

0.025 0.258 10.256 0.327 0.596 0.019 0.018 0.132

0.050 0.281 0.279 0.352 0.636 0.022 0.021 0.150

0.100 0.311 0.311 10.387 0.694 0.026 0.025 0.173

0.2jO '0.373 0.375 0.452 0.799 0.035 0.034 0.229

0.500 0.459 0.461 0.541 0.941 0.050 0.048 0.316

0.750 0.567 0.565 0.644 1.103 0.073 0.070 0.446

0.900 0.681 0.685 '0.753 1.265 0.103 0.097 0.607

0.950 0.760 0.755 0.825 1.379 0.124 0.118 0.728

0.975 10.832 0.824 0.892 1.474 0.146 0.138 0.853

0.990 0.916 0.923 0.974 1.584 0.183 0.1,3 1.056

*Based on direct simulation of the asymptotic process,

using k 60 intervals and 10,000 replicates
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Table 4.3

Asymptotic Quantiles* (Ebtimateb) of EDF Test
Statistics for tno Extreme Value Distribution

With Both Parameters Estimated

pth Quantile

+ W2 2 AD D v w U

0.010 0.248 0.244 0.317 0.579 0.016 0.015 0.i5

0.025 0.269 0.270 0.342 0.626 0.019 0.018 0.134

0.050 0.292 0.295 0.368 0.669 0.022 0.021 0.152

0.00 0.323 0.325 0.400 0.722 0.026 0.025 0.179

0.250 0.387 0.387 0.463 0.824 0.035 0.034 0.234

0.500 0.472 0.470 0.551 0.961 0.049 0.047 0.320

0.750 0.581 0.579 0.654 1.122 0.073 0.069 0.448

0.900 i 0.694 0.691 0.761 1.293 0.101 0.096 0.610

0.9 0 0.768 0,751 0.828 1.388 0.123 0..17 0.726

0.975 0.834 0.823 0.888 1.476 0.143 10.136 0.833

0.990 0.918 0.909 0.983 1.597 0.171 0.164 1.010

*Based on direct simulation of the asymptotic process,
using k = 90 intervals and 10,000 replicates
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Table 4.4

Asymptotic Quanuiie6* (Estimatus) of EDF Test
Statistics for the Extreme Value Distribution

With Loth Parameters Estimatea

pth Quantile

D D V L

0.010 0.254 0.254 0.328 0.596 0.017 0.0Th .12j

0.025 0.281 0.278 0.352 0.b38 i 0.019 0.019 0.140

0.050 0.304 0.303 0.378 0.683 0.022 0.021 0.158

0.100 0.338 0.334 0.407 0.739 0.033 0.031 0.183

0.250 0.397 0.395 0.472 0.844 0.035 0.034 0.z41

0.500 0.4b4 0.480 0.559 0.983 0.u51 0.048 0 329

0.750 0.591 0.585 0.666 1.146 0.074 0.070 0.459

0.900 0.705 0.702 0.773 1.309 t 0.102 0.098 0.624

0.950 0.778 0.775 0.b38 i.406 0.122 0.116 0.738

0.975 0.841 0.636 0.899 1.492 0.142 0.135 0.841

0.990 0.910 0.918 0.965 1.608 0.i69 0.161 0.996

*6ascd on dircer simulation of the asymptotic process,

using k 120 intervals an, 10,000 replicates

44-
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Table 4.5

QuantilsU of tue Ditribution of Mk , the Maximum of

a 3rownian Motion Procuss Discretized at k Points

ptu Quantile by ?tn Quntile by

k Simulation i Approximation (4.2)

.90 i 1.5725 1.5146

20 .95 1.9318 1.8296

.975 2.1466 2. 1196

.990 2.5053 2.4696

o90 1.6049 i.5386

30 .95 1.9362 1.8536

.975 2.2495 2.1436

.990 2.5815 2.4936

.90 1.6376 1.5626

50 .95 1.9798 1.8776

.975 2.2085 2.1676

.990 2.5407 2.5176

•90 1.5997 1.5697

60 .95 1.9416 1.8847

.975 2.2583 2.1747

.990 2.4642 2.5250 1

• 90 1.6239 1.5835

90 .95 1.8913 1.8985

.975 2.1240 2.1885

990 2.4625 2.5385
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Ayymptouic Quantlies ,f LWi" ',!si: Statistics
,or -he zxtremc Vi-LuC Diszributon

Wisih Boch Parameter-, Estirmated

ptn Quantilo

Dn n V A__

.75 .62 .62 .70 1.22 1 .126 .073 .474

.90 .73 .73 .80 1.37 .142 .102 .637

.95 .81 .81 .87 1.48 .150 .124 .757
•975 .87 .S7 .94 1.56 1 .158 .i46 .877

990 .96 .96 1.01 1.67 .170 .175 1.038

*From Stephens (1977, Table 1, Case 3)
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